SURVEYS

METHODS FOR THE ANALYTIC“ DETERMINATION OF THE
EFFECTIVE CONDUCTIVITIES OF HETEROGENEOUS SYSTEMS

G. N. Dui'nev and V. V. Novikov UDC 536.24

1, Closure of Transfer Equations in Heterogeneous Systems

Heterogeneous systems with a disordered structure (composite and granular materials, eutectic alloys
and their melts, composites, metal ceramics, solutions, etc.) constitute macroscopic uniform systems made
up of small nonuniform regions (components) and delimited interfaces. The dimension of the nonuniformity, d,
is much smaller than the characteristic dimension L of the specimen, but much larger than the length of the
free path A, of the carriers of heat flux, electricity, etc., i.e., Ay < d < L,

Heterogeneous systems are usually regarded as a quasihomogeneous medium possessing effective proper-
ties which depend on the properties, concentrations, and nature of interaction of the components and the struc-
ture. The effective conductivity A is determined from the equation

(Ty=—Ave), (1)

where G} is the flux of the substance (heat, mass, electricity), averaged over the volume V (of the hefero-
geneous system); (V) is the potential gradient averaged over the volume;
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For local regions i the following equations hold:
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An analysis of transfer processes (in heterogeneous systems) can be carried out, without loss of gener-
ality, for two-component systems. In this case (2) can be written in the form
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Equations (4), taking account of (1), can be written in dimensionless form:
N = m¥, +vm¥, N= 2 v B
_ A Ay (%)

m; ¥+ mU=1, (ve; > =¥ (y9).

From system (5) it can be seen that in order to determine N, ¥, ¥,, we must have additional information,
since there are two equations and three unknowns: N, ¥;, ¥,; e.g., we need information on the structure of
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the heterogeneous system. Thus, for a stratified system, when the layers are parallel to the flux <j> ,

W= W¥,=1. (6)

Solving (5) and (6) for N, we obtain the well-known equation
N“ :m1+ Ums. (7)

If the layers are perpendicular to the average flux <—j’> of the substance, then

A1<V(P1>:Az<€$>or Y, = vV,
Solving this equation, together with (5), for N, we obtain the effective conductivity for perpendicular layers
N = v (vmy - my)L. (8)

The method used for the closure of the system of transfer equations will determine the further course of the
investigation and lead to the appearance of a large number of methods and formulas for N. The known methods
for the closure of the equations (5) may be classified as follows: the use of experimental data; geometric simula-
tion of the structure of heterogeneous systems; formal construction of a function for N; and so~called asympto-
tic methods.

This classification will serve as a plan for a survey of the various methods of determining the effective
conductivity of heterogeneous systems. An analysis of [1-4], which considered systems with a low concentra-
tion of nonuniformities, in which each of them is in a uniform field < V¢ >, not introducing any perturbations,
will not be carried out here, since this is discussed in [5-8] .

In analyzing the models and formulas, we shall start with the general requirements which they must
satisfy [8]: compatibility of the model and the real system; possibility of obtaining physically correct results
in limiting cases; absence of internal contradictions in the theoretical scheme; satisfactory correspondence
between the results of the calculations and the experimental data over a wide range of variation of the deter-
mining parameters.

2. Modeling of the Structure of Heterogeneous Systems

The methods of this group directly or indirectly specify a model of the structure, on the basis of which
we determine the expression for ¥, and this enables us to close the equations (5) and determine the effective
conductivity.

2.1. "Effective Medium" Method. Any model of a heterogeneous system, and in particular a model of
an effective medium, is so constructed as to enable us to determine ¥, or ¥,, which, together with (5), en-
ables us fo determine N. Therefore the main attention will be devoted to the question of how we can deter-
mine the function ¥ (explicitly or implicitly) and what kind of model the method is based upon. If possible,
we shall digress from the mathematical representations used by various authors [9-15].

In the effective-medium method a heterogeneous system is simulated by an arbitrarily chosen particle
which is surrounded by a medium with the effective (desired) properties. In this case the function ¥, can be
determined from the relations for a particle having dielectric permeability ¢; which is immersed in a medium
with effective dielectric permeability € [16]:

E— > _E (9)
g+ 28
where E, E represent the electric field intensity in the particle and in the medium, respectively.

On the basis of an analogy between electrostatics and thermal and electrical conductivity, we can re-
place E, and E with the potential density {V)and (V(pl) andreplace g, and e with the conductivities A, and A, i.e.,

3A 3N (10)
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Solving (5) and (10) for N, we obtain

11
N = [(8my — 1)+ (3my — 1) v)/4 - ]/ [(3m1—1)—{—(3m2—1)v]2/16+~—;—. ay



The expression (11) for N was first obtained in 1935 [9] and introduced repeatedly thereafter [10-15] and is
known in the Soviet literature as the Kondorskii—Odelevskii equation [5, 7, 8, 17].

It should be noted that the authors of [9-15], in making their determinations, used various approaches
and mathematical methods but always based their studies on the same effective-medium model, so that they
obtained identical expressions for N, This confirms the importance of the problem of closure of the transfer
equations. If in the closure of Eq. (5) we use the same information on the structure of the system (identical
models), then the expressions for N will also be identical. The main defects of the effective-medium model
are the following: for v = 0 and m; < 0.3, N<0; forv < 10~? we observe a deviation from the experimental
data [18, 19]; the method does not take account of surface and contact phenomena on the interface between the
components, which in a number of cases determine the transfer processes in heterogeneous systems.

If we assume that the dielectric permeability of a particle is e, and that of the surrounding medium is &,,
then (9) can be written as follows:
3¢y 3A, (12)

Elzz ———  0I T‘lz

& -+ 281 Ay 24,

Solving (6) and (12) for N, we obtain an expression for the effective conductivity which is valid for low concen-
trations of the discrete component, i.e., for m; « 1 [16]
Nelam S0—=0 A (13)
v+ 2 Ay
2.2, Integral Method. This method was first proposed by Bruggemann [9] and later mentioned again in
[20]; it was used by Skorckhod in [21, 22].

In the integral method we consider the increment added to the conductivity of the mixture when we add
to it a small quantity of dispersed particles with volume dn per unit volume and we set up a differential equa-
tion for dA. This problem is solved in the same way as the electrostatic problem [9].

The variation in the effective generalized conductivity for a small admixture of a second (discrete) com-
ponent, according to (13), can be written in the form:

3(As— A Ay
4’\2 + 2A1

v, (14)

AN =A—A, = An, An

Suppose that V, is the volume occupied by the second component; the addition of a volume AV, to it leads to a
change of my* in the initial volumetric concentration m,:

V.- AV, (15)
Vit Vot AV,

m¥ =
Then from (15) we obtain

ms+ An

m 1
14 An

[CF

and hence the increment in the volumetric concentration is equal to
Amy = m} —m, = (1 —my) An
or, in differential form,
dmy = (1 — m,) dn. (16)
Substituting (16) into (14), we obtain

3(A,—A) A, dm, 17
Ay 2A, 1 —m,

dA =

After this, as in the effective-medium method, we assume that each particle is surrounded by a medium with
the effective properties, i.e., in (17) we replace A, with A:

3(A,—A)A  dm, (18)

dA = .
A, +2A 1 —m,
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Integrating (18), taking account of the condition Alm,_; = A;, we obtain

1

3 (19)
) = (1 —my).

A=Ay (A
A

There is an inherent internal inconsistency in this method. If we replace A; with A, we are actually specifying
the form of the function ¥, to be the form given in (10), i.e., specifying the model of the structure. Then
there is no need to set up and solve Eq. (18); we must substitute ¥; into Eq. (5) and determine N. This brings
in a second inconsistency: specifying identical input information (identical models), we have arrived at differ-
ent results for the solution of (5) and (18); all of this indicates that the integral method is incorrect.

From (19) it follows that when A, = 0, the effective coefficient A = 0 for all values of m,, which is not
true for mixtures with a disordered distribution of the components. The above defects limit the use of the in-
tegral method in predicting the properties of heterogeneous systems.

2.3. Methods Taking Account of the Disordered Distribution of the Components and the Shape of the Inter-
faces between Them. In this group of methods we specify some probabilistic law of distribution of the compo-
nents and construct a geometric model of the structure of the real heterogeneous system. This model is used
to determine the function ¥ and close the Egs. (5) [23-26]. An analysis of these studies [27] showed that tak-
ing account of the disordered distribution of the components and the shape of the granules provides no advan-
tage over previously known studies in calculating the effective conductivity but leads, instead, to more cumber-
some expressions for N.

Zarichnyak [28] proposed the following formula for calculating the effective conductivity of heterogeneous
systems with a disordered distribution of the components:

Ngg = by - 4 T}bﬁbz_‘ (20)

1 Vg

2
mynty 4 Ay

To determine this quantity, he considered a mixture of two kinds of cubes randomly distributed in space, where
a plane passing through a face of any cube .does not intersect the other cubes. The determination of the effec-
tive conductivity of the heterogeneous system reduces to the determination of the conductivity of a layer of thick-~
ness 2d (where d is the dimension of an edge of the cube). The layer was subdivided by adiabatic planes paral-
lel to the average flux < j > (which were perpendicular to the planes bounding the layer), i.e., the three-dimen-
sional problem of determining A reduced toaone-dimensional problem, andthis was followed by a determination
of the probability of a combination of similar and dissimilar cubes along the height of the layer.

Expression (20) for A,q coincides with the expression for the effective conductivity obtained for fibrous
systemsg on the basis of an ordered structure [8]. The model of a layer of height 2d and the ordered model of
a fibrous system do not possess three-dimensional symmetry. The correspondence of these structures led to
the finding of identical formulas for A.

It must be noted that the method proposed in [28] for determining A has the following defects.” The lar-
ger the value h chosen for the thickness of the layer, the closer the values of Apg must be to the true effective
conductivity A of the entire system, i.e.,

lim A, = A,

firoo
where n is the number of cubes along the height of the layer. Consequently, Aj;q must describe the effective
conductivity better than A,q, etc. However, a comparison of the values of Ayq, Ayg, and the experimental data
contradicts this conclusion, which indicates that there are internal contradictions in this method for the deter-
mination of A (as n —, the value of Apq — 0 for any concentration of the components mj < 1). This is par-
tially solved in [29].

A comparison of the calculation of A by formula (20) with the experimental data on the effective conduc-
tivity of heterogeneous systems showed good agreement between them only for v > 10~?, where v is the ratio
of the conductivities of the components. For v < 1072 the calculated values are much higher than the experi-
mental values. Furthermore, formula (20) fails to describe the jump in the effective conductivity near the flow
threshold for v = 0, which was found in [30-34].

2.4. Method of Transition to an Elementary Cell. This method is based on the following assumption [8]:
the effective conductivity values for ordered and disordered structure are equal to each other if they are adequate
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and the properties and the volumetric concentrations of the components are identical (the concept of adequacy
must be defined more precisely for each class of structures).

The ordered system has long—range; order, and in any such system we candistinguish an elementary cell —
an element of volume which we can repeat in a specified way to obtain the volume of the initial structure.

Thus, the determination of the effective properties of heterogeneous systems reduces to the determina-
tion of the properties of an elementary cell.

In determining the effective conductivity of an elementary cell, it is customary to use the method of
cross sections. This method consists in determining the effective conductivity of bodies composed of a num-
ber of pieces by subdividing them by means of auxiliary isopotential planes through which no streamlines can
pass. This method enables us to pass from differential equations and partial derivatives to algebraic equa-
tions, which greatly simplifies the solution of the problem. The method of eross sections is an approximate
method, and the exact value of the effective conductivity lies between the values Ajg,, obtained by using the
intersections of the composite body with the isopotential planes perpendicular to the flux <j >, and the values
Ap, obtained by using the intersections with planes through which no streamlines can pass and which are
parallel to the flux

Ao = A > Ag

In [35] we proposed using a combined method of cross sections of composite bodies, which enables us to ob-
tain an expression for the effective conductivity whose maximum possible error is less than 7% of the numeri-
cal solution of the problem.

The transition to an elementary cell in the determination of the effective conductivity was used in [6, 8,
13, 36-38]. For structures with isolated inclusions the Eikin—Odelevskii model is widely used; this model
vields for N the expression [13]

N=T—m[(1l —v)™' — (1 —my)/3]7". (21)

For structures with interpenetrating components the Frey—Dul'nev model is used. The expression for N ob-
tained by means of an'adiabatic" subdivisionof an elementary cell of this model has the form {38}

N=C1v(l—CR+2C{1—C){Cv+(1—O07 (22)

where C is a geometric parameter of the model which is related in a unique manner to the volumetric concen-
tration of the components [8].

The monograph [8] analyzes the elementary-cell method in detail and notes (establishes) the good agree-
ment between the calculated and experimental results for various heterogeneous systems which are in various
states of aggregation. However, it was not possible by this method to describe satisfactorily the phenomenon
of transfer of extremely nonuniform heterogeneous systems (of the type of metallic inclusions’in a dielectric
or a pressed mixture of metal and alumina particles) when Ay/A; — 0. In this case the calculated and experi-
mental data differed substantially, and furthermore, it was not possible to explain the "discontinuous conduc-
tivity" found in [30-34] for certain concentrations of the components.

2.5. Method of Averaging Geometric Parameters. This method is a natural development of the studies
using a transition from a disordered to an ordered structure with the distinguishing of an elementary cell.
Here we find an element with averaged geometric parameters (the averaged element), whose conductivity is
equal to the conductivity of the system as a whole. Methods for averaging the geometric parameters of a mo-
del were tested in investigations designed to determine the conductivity of granular and related systems with
digsordered structure, described in detail in [8], and they supplement the elementary-cell method. This meth-
od of investigation has the same defects as the method analyzed in 2.4.

3. Semiempirical Methods

In a number of studies [6, 39-43] attempts were made to extract information for the closure of Eq. (5)
from experimental data. In this case one or two experimental parameters, k; and n, were introduced into the
expression for A in order to describe the effective thermal conductivity for at least one class of materials
[39-43]. The reason for this is that N depends on many parameters (porosity, dimensions of the pores, tem-
perature, pressure of the filler gas, contact conductivity between granules, etc.), which makes it more dif-
ficult to take account in detail of their effect on the conductivity of the system without information concerning
its structure. It is impossible to analytically establish the limits of applicability of the expression for N in the
determination of ¥; from the experiment. Another mesthod for determining N in the heterogeneous structures
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was proposed by Misnar [6]. For a two-component system with component conductivities A; and A,, the value of A was
calculated twice by formula (21): A'for the case when the inclusion andthe base have conductivities Ayand A;, and A"
for the case in which the conductivities of the inclusions and the base were Ay and A,. Then Misnar selected
the function A =a A' + bA", where a and b are empirically determined coefficients equal in the particular case
toa =b =0.5. It is interesting that the thermal conductivity of many mixtures of solids, liquids, and gases
can be satisfactorily described by this formula.

In calculating the thermal conductivity of moist solid porous structural materials, Krischer used a com-
bination of the method of the elementary cell and the method of empirical coefficients [42]. Despite the crude
schematization of the structure of the materials, the author took account of the essential properties of the ob-
ject under study, the presence of dry and moist segments in the solid particles and pores, which may be ar-
rangedeither inparallel or in series withthehead flux, It is not known in the Krischer model what fraction of the
segments are oriented perpendicular (@) and parallel (I —«) to the general direction of the heat flux, Another
unknown quantity is the fraction of these segments in the surface of the solid body wetted by the moisture.
Using the known relations (7) and (8) for the effective thermal conductivity of layers connected in parallel and
in series with each other and also determining from the experiment the parameters a and b, Krischer pro-
posed a method for calculating the effective thermal conductivity. This method was developed in [43], where
the basic unit considered was an elementary cell of the system with interpenetrating components, which made
it possible to calculate the parameter a; however, one empirical parameter b still remained in the formulas.

The analysis of the various semiempirical methods for investigating transfer processes could be conti-
nued still further. However, the above-mentioned studies are sufficient to draw some conclusions concerning
this group of methods. If we completely ignore the structural properties of the material, as was done in [6,
39-41], then this line of investigation, in our opinion, is not very promising, for the reasons indicated above.
Much more informative and better justified are those semiempirical methods in which in determining A we
take account of the topology of the heterogeneous system and empirical coefficients are used only to make some
individual features of the process more precise [42, 43].

4. Methods Using Construction of the Functions N

In the studies of this group the form of the function N is usually determined not from the solution of the
physical problem but by a formal continuation of functions satisfying the limiting conditions and a number of
qualitative requirements such as invariance with respect to components and invertibility of the expressions.

The method of constructing the function N was developed by Lichtenecker et al. [44-46] more than 25
years ago. An analysis of these studies was carried out in detail in [8] and the survey article [27], in which
it was shown that the formulas obtained for N yield incorrect results even in the passage to the limit.

A more correct application of the method of constructing the functions N enables us to avoid this defect
and propose for N a formula which remains valid in the passage to the limit and satisfactorily describes a num-
ber of experimental data. For example, from the upper and lower bounds for A

Ay -+ Agmy > A> AT 'my + As'my (23)

we obtain an expression for A in the form [47]
A" = Alm, + Abm,. : (24)

The exponent n was selected as follows:
n=(1+Lydh), (25)

where < [ > is the average distance between the centers of the particles with best conductivity

1

Uy =dmy ° (26)

and d is the average diameter of the particles. Then the expression (25) for n, taking account of (26), can be
rewritten in the form
’ 1 1

n=m’ (14+m’ ) (27)

A comparison of the calculation of A according to (24) and (27) with the experimental data showed good
agreement when v = 10~*. However, the functions constructed by this method do not reflect the real structure
of the material, and therefore, they are not sensitive to such essential properties of the transfer process (the
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structure) as contraction cracks in the surface, anisotropy, transition from a structure with connected inclu-
sions to one with isolated inclusions, etc.

Despite the correctness of the results, we believe that, on the whole, the method of construction of func-
tions is not very promising. ‘

5. Asymptotic Methods

This group of methods is called asymptotic because it uses a process of successive approximation, in
which the chosen mathematical model is investigated and refined until we obtain the best possible agreement
between the values calculated by the theoretical method and the experimental data.

5.1. Expansion in a Small Parameter. In a number of studies {16, 48, 49], in the determination of A
the authors did not use a model of the structure of the heterogeneous system but based their investigation on
a small-parameter series expansion of the fluxes j(r), the gradients Vg(r), and the conductivities A(r). In
this group of methods a necessary condition for determining A is the presence of a small parameter which
can be distinguished if the following conditions are satisfied:

a) 8A — 0 for all values 6(V—<;) < o, i.e., when the difference between the conductivities of the compo-
nents of the mixture, AA= A, — A,, is small in comparison with the values of A; and Ay;

—

b) 5(—57}0) — 0 for all values 6A < . This will be satisfied if the local values of the gradient 3@(1‘) do not
differ greatly from the average value < Vg >.

1f these conditions are satisfied, the effective conductivity can be determined in the form [49]

A:<A>P"“L (A—(A>P) +<1r (A= (AY P> *”'I (28)

3 (A)? 3 (A>3

An important defect of this method is that it does not take account of the structure of the mixture, and, e.g.,
for spherical, fibrous, or ellipsoidal particles the expression for A has the same form, while experiment
shows that for such systems A varies differently as a function of concentration.

5.2. Variational Upper and Lower Bounds for A. In a number of studies [50-60] upper and lower bounds
were found for A. Thus, in [59], on the basis of the principle of minimum production of entropy, it was es-
tablished that

Ay ZAZ AL,
where A and A; can be obtained from formulas (7}, (8).

Such an estimate (23) has too wide a range, and therefore in a number of studies attempts were made to
narrow it. The most interesting results, in our opinion, were obtained in [63, 54]. Thus, [63] proposed the

formula
b my

A+ <ALA, . (29)
P A — AT m3A, T T (A — A my/3A,

The formula obtained in [54] was

Ay— My (A — Ay)? CAC A, = My (/}1”__,‘/1\2)2‘_ (30)
L mgAg A mpAy A I My + Moy -+ A, '

With respect to all the estimates for A made within the framework of the variational method, it must
be noted that as v — 0, the difference between the upper and lower bounds increases and takes on the same
order of magnitude as the quantities being estimated. It is possible to have cases in which the values of A
go beyond the limits of the upper and lower bounds given in (29) and (30) [58].

6. Percolation Theory

The theory of percolation processes [30-34] has been used recently in'determining the properties of
heterogeneous systems for v = 0. In this theory it was shown that when A; # 0 and A, = 0, there is a jump,
depending on the effective conductivity A, for the effective concentration of the component my = mg (if my <
me, then A = 0; if my > mg, then A =0). The quantity mg is called the percolation threshold and indicates
the volumetric concentration m, at which in a nonuniform system there arises an infinite chain of the conduc-
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tive component — an infinite cluster (IC). In percolation theory the following expression is proposed for the
case Ay = 0 and mg = my = 0.5 [33-34]: “
N = A(m,—my)*. (31)

It should be noted that the occurrence of discontinuous conductivity when the percolation threshold my = mg is
reached is a new result, which was not reflected in any of the previously considered structural models or for-
mal methods for determining N. The simulation of heterogeneous structures and their analysis by the Monte
Carlo method, using electronic computers as well as natural experiments, have made it possible to establish
for three-dimensional systems the values k=1.8 £0.2, m¢ = 0.15 +£0.03.

The recommendations with respect to the quantity A are less clearly defined. Thus, in [18, 19], on the
basis of model experiments, it was found that for mg < m; = 0.5,

N =16(m—my"°.

In [31] it was found with the aid of computer simulation that A =1 for m; = my = 0.5. In [18, 19} attempts
were made to generalize the results of percolation theory to the case in which A, <A, but Ay # 0 and my varies
in the range 0 = m; = 1. For this purpose, the entire range of concentrations of the components was sub-
divided into three segments, and a separate function for N was recommended for each segment. Thus, ifv =
5- 10‘4, then N is equal to:

New(l—5m)™, i  my<<m,
N=16(m—m)"® i m <m<C05.

For my > 0.5, N was determined by (11), obtained on the basis of the effective-medium model, This formula
is recommended over the entire range of concentrations if v = 3:107%, For 5-107* =» = 1072 the authors. of
[18, 19] introduced into formula (11) an experimental parameter which enabled them to reconcile the calculation
with the experimental data.

In our opinion, the use of the effective-medium model as the basis for generalizing the results of perco-
lation theory and the experimental data for structures with a disordered distribution of components and with
v < 107 is formal in nature. The effective-medium model does not reflect the topology of the IC and does not
take account of its variation (branching) as the concentration varies. Another shortcoming of the generaliza-
tions made in [18, 19} is the multiplicity of the formulas: for each range of concentrations and conductivity
ratios v there exists a separate formula which is unrelated to the structure of the nonuniform system, i.e.,
the proposed formulas are not connected with the topology of the IC.

In conclusion, it may be noted that the problem of the closure of the system of equations which was for-
mulated in Sec. 1 explains many of the methods and procedures followed in the investigation of the conductivity
of heterogeneous systems. If we take account of the diversity of structures, inclusion shapes, differences in
state of aggregation, physical properties of the materials, etc., we can get an idea of the tremendous number
of combinations of methods for calculating A, each of which differs in some respect from the others. Over the
many years of development of this problem, there have been accumulated such a great number of methods and
formulas that upon first acquaintance with it one might get the impression that it is extraordinarily complicated
and completely hopeless.

In spite of this, however, it is possible to deduce some definite recommendations even {rom the present
survey. First of all, the most promising methods are those which do not ignore the real topology of the sys-
tem under study: the elementary-cell, averaged-element, and percolation methods. We noted above the spe-
cific limitations of each of these methods. It seems natural to formulate the following problem: to construct
a model of a heterogeneous system which will have the geometric visualizability found in the models used in
the elementary-cell and averaged-element methods; which will take account of the static nature of the distribu-
tion of the components, the tortuous paths of the heat flux, and the presence of dead-end paths; which will have
a probability of the formation of conductive bridges and the appearance of discontinuous conductivity at the
threshold value of concentration, as found in the percolation method; and which, in limiting cases, will pass to
well-known and highly desirable models (the principle of correspondence).

It appears that such a model will be constructed on the basis of a combination of the elementary-cell,
averaged-element, and percolation methods, since each of these methods meets some of the requirements
formulated above. At the same time, it should be noted that many heterogeneous systems even today can sa-
tisfactorily be studied on the basis of the methods considered here. What is needed is simply to have a good
understanding of the possibilities of each method, and that is what we have attempted to give in this survey.
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