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METHODS FOR THE ANALYTIC DETERMINATION OF THE 

EFFECTIVE CONDUCTIVITIES OF HETEROGENEOUS SYSTEMS 

G. N. DulTnev and V. V. Novikov UDC 536.24 

i. Closure of Transfer Equations in Heterogeneous Systems 

Heterogeneous systems with a disordered structure (composite and granular materials, eutectie alloys 

and their melts, composites, metal ceramics, solutions, etc.) constitute macroscopic uniform systems made 
up of small nonuniform regions (components) and delimited interfaces. The dimension of the nonuniformity, d, 
is much smaller than the characteristic dimension L of the specimen, but much larger than the length of the 

free path A 0 of the carriers of heat flux, electricity, etc., i.e., A 0 << d << L. 

Heterogeneous  s y s t e m s  a re  usual ly  r egarded  as a quasihomogeneous medium possess ing  effect ive p r o p e r -  
t ies  which depend on the p r o p e r t i e s ,  concent ra t ions ,  and nature of in teract ion of the components  and the s t r u c -  
ture .  The effect ive conductivity A is de te rmined  f rom the equation 

<] >=--A<v~>, (1) 

where (j) is the flux of the substance (heat, mass, electricity), averaged over the volume V (of the hetero- 
geneous system); (V~) is the potential gradient averaged over the volume; 

, I < [> - - y -  , h (r) dv, 

V 

< v~ > = ~ - .  w~ (r) dv. 
V 

For  local regions i the following equations hold: 

h ( r )  = -- a~ (r) W~ (r), 

d i v ~ ( ~  : 0, 

rot V~ (r) = O. 

(2) 

(3) 

An analysis of transfer processes (in heterogeneous 
ality, for two-component systems. In this case (2) can be 

Equations (4), taking account of (I), can be written 

N -- rnlT1 + vm2~2, N - - -  

systems) can be carried out, without loss of gener- 
wri t ten  in the fo rm 

< V~ ) = m l <  vq~ > § V% >, 

--~ 1 ~---~ 
( VcPi } ~ V% (ri) dVi. 

V i 

in d imens ionless  form: 

A A2 
AI AI 

m ~ W l + m ~ = l ,  < V % > = ~ l < V ~  0>- 

(4) 

(5) 

From system (5) it can be seen that in order to determine N, ~I, ~I'2, we must have additional information, 
since there are two equations and three unknowns: N, @I, 92; e.g., we need information on the structure of 

Leningrad Institute of Precision Mechanics and Optics. Volgograd Polytechnic Institute. Translated 
from Inzhenerno-Fizicheskii Zhurnal, Vol. 41, No. i, pp. 172-184, July, 1981. Original article submitted 
June 2, 1978. 

0022-0841/81/4101-0801 $07.50 �9 1982 Plenum Publishing Corpora t ion  8 01 



the heterogeneous system.  Thus, for a stratified sys tem,  when the layers  are  parallel  to the flux <j> , 

(6) WI= ~F2 I. 

Solving (5) and (6) for N, we obtain the well-known equation 

N,i = m~+ ~m2. (7) 

If the layers  are perpendicular  to the average flux < j  > of the substance,  then 

A I ( V % )  =A2 ( V ~ )  or ~1 vT~. 

Solving this equation, together  with (5), for  N, we obtain the effective conductivity for perpendicular  layers  

N~ = v (~ml + m~)-i. (8) 

The method used for the closure of the sys tem of t r ans fe r  equations will determine the fur ther  course  of the 
investigation and lead to the appearance of a large number of methods and formulas for  N. The known methods 
for the c losure  of the equations (5) may be classified as follows: the use of experimental  data; geometr ic  s imula-  
tion of the s t ructure  of heterogeneous sys tems;  formal  construct ion of a function for N; and so-cal led asympto-  
tic methods. 

This classif icat ion will serve  as a plan for a survey of the various methods of determining the effective 
conductivity of heterogeneous sys tems .  An analysis of [1-4], which considered sys tems with a low concent ra-  
tion of nonuniformities,  in which each of them is in a uniform field < V~ >,  not introducing any per turbat ions,  
will not be car r ied  out here ,  since this is discussed in [5-8]. 

In analyzing the models and formulas ,  we shall s tar t  with the general requirements  which they must 
satisfy [8]: compatibil i ty of the model and the real  system; possibil i ty of obtaining physically co r r ec t  resul ts  
in limiting cases;  absence of internal  contradictions in the theoret ical  scheme;  sa t i s fac tory  correspondence 
between the results  of the calculations and the experimental  data over a wide range of variat ion of the de t e r -  
mining paramete rs .  

2. Modeling of the Structure of Heterogeneous Systems 

The methods of this group directly or indirectly specify a model of the structure, on the basis of which 
we determine the expression for ~i, and this enables us to close the equations (5) and determine the effective 
conductivity. 

2.1. "Effective Medium" Method. Any model of a heterogeneous system, and in particular a model of 
an effective medium, is so constructed as to enable us to determine ~I or ~2, which, together with (5), en- 
ables us to determine N. Therefore the main attention will be devoted to the question of how we can deter- 
mine the function ~i (explicitly or implicitly) and what kind of model the method is based upon. If possible, 
we shall digress from the mathematical representations used by various authors [9-15]. 

In the effective-medium method a heterogeneous system is simulated by an arbitrarily chosen particle 
which is surrounded by a medium with the effective (desired) properties. In this case the function ~I can be 
determined from the relations for a particle having dielectric permeability el which is immersed in a medium 
with effective dielectric permeability e [16]: 

E1 3~ ~, (9) 
el § 2~ 

where Et,  ~ represent  the electr ic  field intensity in the part icle and in the medium, respect ively.  

On the basis of an analogy between e lec t ros ta t ics  and thermal  and electr ical  conductivity, we can r e -  
place Z'~l and~wi th  the potential density ( ~ }  and (V~o 1} and replace  s t and s with the conductivities A t and A, i .e. ,  

< Vq51 ) _ 1 3 A  or W~ 3N (10) 
A l + 2A 2N -? 1 

Solving (5) and (10) for N, we obtain 

N = [(3m~ - -  I) + (3m~ - -  1) v]/4 -+- ] / [ ( 3 m l - - 1 )  + (3m2 --1) ~]2/16 + 
(11) 

JZ_. 
2 
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The e x p r e s s i o n  (11) fo r  N was f i r s t  ob ta ined  in 1935 [9] and i n t r o d u c e d  r e p e a t e d l y  t h e r e a f t e r  [10-15] and is 
known in the  Sov ie t  l i t e r a t u r e  as  the K o n d o r s M i - O d e l e v s M i  equa t ion  [5, 7, 8; 17]. 

I t  should  be  noted tha t  the  a u t h o r s  of [9-15] ,  in m a k i n g  t h e i r  d e t e r m i n a t i o n s ,  used  v a r i o u s  a p p r o a c h e s  
and m a t h e m a t i c a l  me thods  but  a lways  b a s e d  t h e i r  s t u d i e s  on the  s a m e  e f f e c t i v e - m e d i u m  m o d e l ,  so  tha t  t hey  
ob ta ined  i d e n t i c a l  e x p r e s s i o n s  fo r  N. This  c o n f i r m s  the i m p o r t a n c e  of the  p r o b l e m  of  c l o s u r e  of the  t r a n s f e r  
equa t ions .  If  in  the  c l o s u r e  of  Eq.  (5) we use  the  s a m e  i n f o r m a t i o n  on the  s t r u c t u r e  of  the s y s t e m  ( iden t i ca l  
m o d e l s ) ,  then  the  e x p r e s s i o n s  fo r  N wi l l  a l s o  be  i d e n t i c a l .  The m a i n  d e f e c t s  of  the  e f f e c t i v e - m e d i u m  m o d e l  
a r e  the  fol lowing:  fo r  u = 0 and m 1 < 0.3, N < 0; fo r  u < 10 -2 we o b s e r v e  a d e v i a t i o n  f r o m  the  e x p e r i m e n t a l  
da t a  [18, 19]; the  method  does  not t ake  account  of s u r f a c e  and con tac t  p h e n o m e n a  on the  i n t e r f a c e  be tween  the  
c o m p o n e n t s ,  which  in a n u m b e r  of  e a s e s  d e t e r m i n e  the t r a n s f e r  p r o c e s s e s  in h e t e r o g e n e o u s  s y s t e m s .  

If  we a s s u m e  tha t  the  d i e l e c t r i c  p e r m e a b i l i t y  of a p a r t i c l e  is  ~2 and tha t  of the s u r r o u n d i n g  m e d i u m  is ~1, 
then  (9) can  be  w r i t t e n  as  fo l lows:  

E1 = 3ei or XF l -  3A~ (12) 
82 + 2el A1 + 2A~ 

Solving (6) and (12) for N, we obtain an expression for the effective conductivity which is valid for low concen- 

trations of the discrete component, i.e., for m I << i [16] 

a (v - -  I) A2 (13) 
N = l + m 2  - -  , v = - - .  

V + 2  A1 

2.2.  I n t e g r a l  Method.  This  method  was f i r s t  p r o p o s e d  b y  B r u g g e m a n n  [9] and l a t e r  men t ioned  a g a i n  in 
[20]; i t  was u sed  b y  Skorokhod  in [21, 22]. 

In the  i n t e g r a l  method  we c o n s i d e r  the i n c r e m e n t  added to  the  c o n d u c t i v i t y  of the  m i x t u r e  when we add 
to i t  a s m a l l  quan t i t y  of  d i s p e r s e d  p a r t i c l e s  with v o l u m e  dn p e r  uni t  vo lume  and we s e t  up a d i f f e r e n t i a l  e q u a -  
t i on  for  dA. This  p r o b l e m  is so lved  in the  s a m e  way  as  the  e l e c t r o s t a t i c  p r o b l e m  [91. 

The v a r i a t i o n  in the  e f f ec t ive  g e n e r a l i z e d  c onduc t i v i t y  fo r  a s m a l l  a d m i x t u r e  of a s econd  ( d i s c r e t e )  e o m -  
ponent ,  a c c o r d i n g  to (13), can  be w r i t t e n  in the  fo rm:  

AA = A - -  A1 3 (A2--  lkl) A~ An, An = AV2 (14) 
A2 + 2A1 V 

Suppose  tha t  V2 is  the  v o l u m e  occup ied  by  the  s econd  componen t ;  the  add i t i on  of  a vo lume  AV2 to i t  l e a d s  to a 
change  of m2* in the  i n i t i a l  v o l u m e t r i c  c o n c e n t r a t i o n  m2: 

Then from (15) we obtain 

V~ q- AV~ (15) 
m * =  

V1 + V~ q- AV2 

m~ + An 
/72* - -  9 

l + A n  

and hence the increment in the volumetric concentration is equal to 

o r ,  in  d i f f e r e n t i a l  f o r m ,  

Am~ = m * - - m =  = (1 - -  m2) An 

din2 = (i -- m.2) dn. (16) 

Substituting (16) into (14), we obtain 

dA = 3 (A2--A1) A1 . dm,z (17) 

A2 -}- 2AI 1 - -  m.2 

A f t e r  t h i s ,  as  in the  e f f e c t i v e - m e d i u m  me thod ,  we a s s u m e  that  each  p a r t i c l e  is s u r r o u n d e d  by  a m e d i u m  with 
the e f f ec t ive  p r o p e r t i e s ,  i . e . ,  in (17) we r e p l a c e  A 1 with  A: 

dA = 3 (A2 - -  A ) A  drno. (18) 

A2 + 2A 1 - -  m2 
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Integrating (18), taking account of the condition A I m2= 0 = A I , we obtain 

I 

A--A2 __ -~=(l--m2). 
AI -- A2 

There is an inherent internal inconsistency in this method. If we replace A t with A, we are actually specifying 

the form of the function ~ to be the form given in (i0), i.e., specifying the model of the structure. Then 

there is no need to set up and solve Eq. (18); we must substitute ~i into Eq. (5) and determine N. This brings 

in a second inconsistency: specifying identical input information (identical models), we have arrived at differ- 

ent results for the solution of (5) and (18); all of this indicates that the integral method is incorrect. 

From (19) it follows that when A I = 0, the effective coefficient A = 0 for all values of m2, which is not 

true for mixtures with a disordered distribution of the components. The above defects limit the use of the in- 

tegral method in predicting the properties of heterogeneous systems. 

2.3. Methods Taking Account of the Disordered Distribution of the Components and the Shape of the Inter- 

faces l~etween Them. In this group of methods we specify some probabilistic law of distribuKon of the compo- 

nents and construct a geometric model of the structure of the real heterogeneous system. This model is Used 

to determine the function ~i and close the Eqs. (5) [23-26]. An analysis of these studies [27] showed that tak- 

ing account of the disordered distribution of the components and the shape of the granules p~rovides no advan- 

tage over previously known studies in calculating the effective conductivity but leads, instead, to more cumber- 
some expressions for N. 

Zarichnyak [28] proposed the following formula for calculating the effective conductivity of heterogeneous 

systems with a disordered distribution of the components: 

~,~ (20) 

To determine this quantity, he considered a mixture of two kinds of cubes randomly distributed in space, where 

a plane passing through a face of any cube does not intersect the other cubes. The determination of the effec- 

tive conductivity of the helerogeneous system reduces to the determination of the conductivity of a layer of thick- 

ness 2d (where d is the dimension of :an edge of the cube). The layer was subdivided by adiabatic planes paral- 

lel to the average flux < j > (which were perpendicular to :the planes bounding the layer), i.e., the three-dimen- 

sional problem of determining A reduced to :aone-dimermional problen% and this was followed by a determinat ion 
of the probability of a combination of s imi la r  and dissimil.ar cubes along the height of the layer .  

Expression (20) for A2d coincides with the expression for the effective conductivity obtained for fibrous 
sys tems on the basis of an ordered s t ruc ture  [8]. The model of a layer  of height 2d and the ordered model of 
a fibrous sys tem do not possess  three-dimensional  symmet ry .  The correspondence of these s t ruc tures  led to 
the finding of identical formulas for A. 

It must be noted that the method proposed in [28] for determining A has the following de fec t s .  The la r"  
ger the value h chosen for the thickness of the l ayer ,  the c loser  the values of And must be to the true effective 
conductivity A of the entire sys tem,  i . e . ,  

lim Ana = A, 

where n is the number of cubes along the height of the layer .  Consequently, Aad must descr ibe the effective 
conductivity bet ter  than A2d, etc. However,  a compar ison of the values of A3d, A~d, and the experimental  data 
contradicts this conclusion, which indicates that there are  internal contradictions in this method for the de t e r -  
mination of A (as n ~ ~, the value of And ~ 0 for any concentration of the components mi < i). This is par- 

tially solved in [29]. 

A comparison of the calculation of A by formula (20) with the experimental data on the effective conduc- 

tivity of heterogeneous systems showed good agreement between them only for u > 10 -2, where u is the ratio 
of the conductivities of the components. For u < 10 -2 the calculated values are much higher than the experi- 

mental values. Furthermore, formula (20) fails to describe the jump in the effective conductivity near the flow 

threshold for u = 0, which was found in [30-34]. 

2.4. Method of Transition to an Elementary Cell. This method is based on the following assumption [8]: 

the effective conductivity values for ordered and disordered structure are equal to each other if they are adequate 
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and the properties and the volumetric concentrations of the components are identical (the conceps of adequacy 

must be defined more precisely for each class of structures). 

The ordered system has long-range order, and in any such system we can distinguish an eler~ entary cell - 

an element of volume which we can repeat in a specified way to obtain the volume of the initial structure. 

Thus, the determination of the effective properties of heterogeneous systems reduces to the determina- 
tion of the properties of an elementary cell. 

In determining the effective conductivity of an elementary cell, it is customary to use the method of 

cross sections. This method consists in determining the effective conductivity of bodies composed of a num- 

ber of pieces by subdividing them by means of auxiliary isopotential planes through which no streamlines can 

pass. This method enables us to pass from differential equations and partial derivatives to algebraic equa- 

tions, which greatly simplifies the solution of the problem. The method of cross sections is an approximate 

method, and the exact value of the effective conductivity lies between the values Also, obtained by using the 

intersections of the composite body with the isopotential planes perpendicular to the flux <j >, and the values 

AA, obtained by using the intersections with planes through which no streamlines can pass and which are 
parallel to the flux 

Aiso ~ A ~ AA. 

In [35] we proposed using a combined method of cross sections of composite bodies, which enables us to ob- 

tain an expression for the effective conductivity whose maximum possible error is less than 7% of the numeri- 
cal solution of the problem. 

The transition to an elementary cell in the determination of the effective conductivity was used in [6, 8, 

13, 36-38]. For structures with isolated inclusions the Eikin-Odelevskii model is widely used; this model 

yields for N the expression [13] 

N = 1 -- rn~ [(I -- v) -I -- (I -- m2)/3]-t (21) 

For structures with interpenetrating components the Frey-Dul'nev model is used. The expression for N ob- 

tained by means of an "adiabatic" subdivision of an elementary cell of this model has the form [38] 

N = C 2 + v (1 - -  C) 2 + 2vC (1 - -  C) ICy -~ (1 - -  C)] - ' ,  (22) 

where C is a geometric parameter of the model which is related in a unique manner to the volumetric concen- 

tration of the components [8]. 

The monograph [8] analyzes the elementary-cell method in detail and notes (establishes) the good agree- 

ment between the calculated and experimental results for various heterogeneous systems which are in various 

states of aggregation. However, it was not possible by this method to describe satisfactorily the phenomenon 

of transfer of extremely nonuniform heterogeneous systems (of the type of metallic inclusions ~in a dielectric 

or a pressed mixture of metal and alumina particles) when A2/A I ~ 0. In this case the calculated and experi- 

mental data differed substantially, and furthermore, it was not possible to explain the "discontinuous conduc- 

tivity" found in [30-34] for certain concentrations of the components. 

2.5. Method of Averaging Geometric Parameters. This method is a natural development of the studies 

using a transition from a disordered to an ordered structure with the distihg~ishing of an elementary cell. 

Here we find an element with averaged geometric parameters (the averaged element), whose conductivity is 

equal to the conductivity of the system as a whole. Methods for averaging the geometric parameters of a mo- 

del were tested in investigations designed to determine the conductivity of granular and related systems with 

disordered structure, described in detail in [8], and they supplement the elementary-cell method. This meth- 

od of investigation has the same defects as the method analyzed in 2.4. 

3. Semiempirical Methods 

In a number of studies [6, 39-43] attempts were made to extract information for the closure of Eq. (5) 

from experimental data. In this case one or two experimental parameters, k 0 and n, were introduced into the 

expression for A in order to describe the effective thermal conductivity for at least one class of materials 
[39-43]. The reason for this is that N depends on many parameters (porosity, dimensions of the pores, tem- 

perature, pressure of the filler gas, contact conductivity between granules, etc. ), which makes it more dif- 

ficult to take account in detail of their effect on the conductivity of the system without information concerning 
its structure. It is impossible to analytically establish the limits of applicability of the expression for N in the 

determination of ~i from the experiment. Another method for determining N in the heterogeneous structures 
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v(as p r o p o s e d b y  Misnar  [6]. Fo r  a two-component  sy s t em with component conduct iv i t ies  A i and A2, the value of A was 
ca lcu la ted  twice by formula  (21): A' for the case  when the inclusion and the base  have conduct iv i t ies  A 2 and A1, and A" 

for  the case  in which the conduct ivi t ies  of the inclusions and the base  were  A i and A 2. Then Misnar  se lec ted  
the function A = a A' + b A " ,  where  a and b a r e  e m p i r i c a l l y  de t e rmined  coeff ic ients  equal in the p a r t i c u l a r  case  
to a = b = 0.5. It is in t e res t ing  that  the t h e r m a l  conduct ivi ty of many mix tures  of s o l i d s ,  l iquids ,  and gases  
can be s a t i s f a c t o r i l y  d e s c r i b e d  by this formula .  

In ca lcula t ing  the t he rma l  conduct ivi ty  of mois t  sol id porous s t r uc t u r a l  m a t e r i a l s ,  K r i s c h e r  used a c o m -  
bination, of the method of the e l e m e n t a r y  ce l l  and the method of e m p i r i c a l  coeff ic ients  [42]. Despi te  the crude  
schemat iza t ion  of the s t ruc tu r e  of the m a t e r i a l s ,  the author took account of the e s sen t i a l  p r o p e r t i e s  of the ob-  
ject  under  s tudy,  the p re sence  of d r y  and mois t  segments  in the sol id  pa r t i c l e s  and p o r e s ,  which may be a r -  
r anged  e i ther  in p a r a l l e l  or  in s e r i e s  wi th the  head flux. It is not known in the K r i s c h e r  model  what f rac t ion  of the 
segments  a r e  or ien ted  pe rpend icu la r  (a) and p a r a l l e l  (1 - a) to the genera l  d i r ec t ion  of the heat  flux. Another  
unknown quantity is the f rac t ion  of these  segments  in the su r face  of the sol id  body wetted by the mo i s tu re .  
Using the known re la t ions  (7) and (8) for  the effect ive t he rma l  conduct ivi ty  of l a y e r s  connected in p a r a l l e l  and 
in s e r i e s  with each o ther  and a lso  de t e rmin ing  f rom the exper iment  the p a r a m e t e r s  a and b, K r i s c h e r  p r o -  
posed a method for  ca lcula t ing  the effect ive t he r m a l  conductivi ty.  This method was developed in [43], where 
the bas ic  unit cons idered  was an e l emen ta ry  cel l  of the s y s t e m  with in t e rpene t r a t ing  components ,  which made 
it poss ib le  to ca lcu la te  the p a r a m e t e r  a; however ,  one e m p i r i c a l  p a r a m e t e r  b s t i l l  r emained  in the fo rmulas .  

The ana lys i s  of the var ious  s e m i e m p i r i c a l  methods for  inves t iga t ing  t r a n s f e r  p r o c e s s e s  could be cont i -  
nued s t i l l  fu r ther .  However ,  the above-ment ioned s tudies  a re  suff ic ient  to draw some conclusions concerning  
this group of methods.  If we comple te ly  ignore  the s t r uc t u r a l  p r ope r t i e s  of the m a t e r i a l ,  as was done in [6, 
39-41], then this l ine of inves t igat ion,  in our opinion, is not v e r y  p romis ing ,  for the r easons  indicated above. 
Much more  informat ive  and be t t e r  jus t i f ied a r e  those s e m i e m p i r i c a l  methods in which in de te rmin ing  A we 
take account of the topology of the he terogeneous  s y s t e m  and e m p i r i c a l  coeff ic ients  a r e  used only to make some 
individual fea tures  of the p roce s s  more  p r e c i s e  [42, 43]. 

4 .  M e t h o d s  U s i n g  C o n s t r u c t i o n  o f  t h e  F u n c t i o n s  N 

In the s tudies  of this group the fo rm of the function N is usua l ly  de t e rmined  not f rom the solut ion of the 
physical  p rob lem but by a fo rmal  continuation of functions sa t i s fy ing  the l imi t ing  condit ions and a number  of 
qual i ta t ive  r equ i r emen t s  such as invar iance  with r e s p e c t  to components and inve r t ib i l i t y  of the e x p r e s s i o n s .  

The method of cons t ruc t ing  the function N was developed by L ich tenecker  et  al .  [44-46] more  than 25 
yea r s  ago. An ana lys i s  of these  s tudies  was c a r r i e d  out in de ta i l  in [8] and the su rvey  a r t i c l e  [27], in which 
it was shown that  the formulas  obtained for  N yield i nco r r ec t  r e su l t s  even in the passage  to the l imi t .  

A more  c o r r e c t  appl ica t ion  of the method of cons t ruc t ing  the functions N enables  us to avoid this  defect  
and propose  for N a fo rmula  which r ema ins  valid in the passage  to the l imi t  and s a t i s f a c t o r i l y  d e s c r i b e s  a num- 
b e r  of expe r imen ta l  data .  F o r  example ,  f rom the upper  and lower  bounds for  A 

Aim1 q- A~m.2 ~ A ~ ATIml -}- AT lm2 (23) 

we obtain an exp re s s ion  for A in the fo rm [47] 

A n =- A~m 1 + A~m~. (24) 

The exponent n was se lec ted  as follows: 

n (1 q- ( l ) d-l) -t, (25) 

where < l > is the average  d i s tance  between the cen te r s  of the pa r t i c l e s  with bes t  conduct ivi ty  
l 

( l ) = d m l  3 ,  

and d is the average diameter of the particles. 

rewritten in the form 

(26) 

Then the e xp r e s s i on  (25) for  n, t a k i n g  account of (26), can be 

l 1 

n ~ m[ a- (1 q- m T ) - q  (27) 

A compar i son  of the ca lcula t ion  of A accord ing  to (24) and (27) with the expe r imen ta l  da ta  showed good 
ag reemen t  when u >-_ 10 -4. However ,  the functions cons t ruc ted  by this method do not r e f l ec t  the r e a l  s t r uc tu r e  
of the m a t e r i a l ,  and t he r e fo r e ,  they a r e  not sens i t ive  to such e s sen t i a l  p r ope r t i e s  of the t r a n s f e r  p r oce s s  (the 
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structure) as contraction cracks in the surface, anisotropy, transition from a structure with connected inclu- 

sions to one with isolated inclusions, etc. 

Despite the correctness of the results, we believe that, on the whole, the method of construction of func- 

tions is not very promising. 

5. Asymptotic Methods 

This group of methods is called asymptotic because it uses a process of successive approximation, in 

which the chosen mathematical model is investigated and refined until we obtain the best possible agreement 

between the values calculated by the theoretical method and the experimental data. 

5.1. Expansion in a Small Parameter. In a number of studies [16, 48, 49], in the determination of A 

the authors did not use a model of the structure ofthe heterogeneous system but based their investigat_~on on 

a small-parameter series expansion of the fluxes j(r), the gradients g~0(r), and the conductivities A(r). In 

this group of methods a necessary condition for determining A is the presence of a small parameter which 

can be distinguished if the following conditions are satisfied: 

a) 6A ~ 0 for all values 6(Vq0) < ~o, i.e., when the difference between the conduetivities of the compo- 

nents of the mixture, AA= A I - A2, is small in comparison with the values of A 1 and A2; 

b) 6(V~o) ~ 0 for all values 5A < m_a This will be satisfied if the local values of the gradient V~0(r)do not 

differ greatly from the average value < V~0 >. 

If these conditions are satisfied, the effective conductivity can be determined in the form [49] 

A=<A> I 1 ((A--(A>)Z> k -- ... �9 
3 (A> 2 (A> a 

An important defect of this method is that it does not take account of the stracture of the mixture, and, e.g., 

for spherical, fibrous, or ellipsoidal particles the expression for A has the same form, while experiment 

shows that for such systems A varies differently as a function of concentration. 

5.2. Variational Upper and Lower Bounds for A. In a number of studies [50-60] upper and lower bounds 

were found for A. Thus, in [59], on the basis of the principle of minimum production of entropy, it was es- 

tablished that 

Ail ~A~A• 

where All and A• can be obtained from formulas (7), (8). 

Such an estimate (23) has too wide a range, and therefore in a number of studies attempts were made to 

narrow it. The most interesting results, in our opinion, were obtained in [53, 54]. Thus, [53] proposed the 

formula 

A1 q_ ml ~ A ~ A~ q- m2 (29) 
(A~ - -  Aj) -~ ,-+- mj3A1 (A~ - -  AI) -~ + m.,/3Az 

The formula obtained in [54] was 

re,m,, (& - -  &)~ ~ a ~ A H = m l m ~  ( &  - -  &)2 (30) 

A , , -  /~ZlA2 ~-/'fl2A1 ~7 At /T/1A;'~- ;//9-A1+ A 7 ' 

With r e s p e c t  to all  the e s t i m a t e s  for  A made within  the f r a m e w o r k  of the v a r i a t i o n a l  metl~od, it mus t  
be noted that  as u - -  0, the d i f f e r ence  be tween  the upper  and lower  bounds i n c r e a s e s  and takes  on the s a m e  
o r d e r  of magn i tude  as the  quan t i t i e s  be ing  e s t i m a t e d .  It is poss ib l e  to have c a se s  in which the va lues  of A 
go beyond the l i m i t s  of the uppe r  and lower  bounds g iven in (29) and (30) [58]. 

6. Percolation Theory 

The theory Of percolation processes [30-34] has been used recently in determining the properties of 

heterogeneous systems for u = 0. In this theory it was shown that when A i ~ 0 and A 2 = 0, there is a jump, 

depending on the effective conductivity A, for the effective concentration of the component m i = m c (if m i < 

mc, then A = 0; if m i > mc, then A # 0). The quantity m c is called the percolation threshold and indicates 

the volumetric concentration m I at which in a nonuniform system there arises an infinite chain of the conduc- 
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tire component - an infinite cluster (IC). In percolation theory the following expression is proposed for the 

case A 2 = 0 and m c -< m i -< 0.5 [33-34]: 

N = A (rnl 7 -  mc) h . (31) 

I t  should  be noted tha t  the  o c c u r r e n c e  of  d i s co n t i nuous  c onduc t i v i t y  when the p e r c o l a t i o n  t h r e s h o l d  m 1 = me i s  
r e a c h e d  is a new r e s u l t ,  which was  not r e f l e c t e d  in any of the  p r e v i o u s l y  co a s i d e r e d  s t r u c t u r a l  m o d e l s  o r  f o r -  
real  me thods  fo r  d e t e r m i n i n g  N. The s i m u l a t i o n  of h e t e r o g e n e o u s  s t r u c t u r e s  and t h e i r  a n a l y s i s  by  the  Monte 
C a r l o  me thod ,  u s i n g  e l e c t r o n i c  c o m p u t e r s  as  we l l  as n a t u r a l  e x p e r i m e n t s ,  have  m a d e  i t  p o s s i b l e  to  e s t a b l i s h  
for  t h r e e - d i m e n s i o n a l  s y s t e m s  the va lue s  k = 1.8 ~0 .2 ,  mc = 0.15 :L0.03. 

The  r e e o m m e n d a t i o n s  wi th  r e s p e c t  to  the  quan t i t y  A a r e  l e s s  c l e a r l y  de f ined .  Thus ,  in [18, 19],  on the  
b a s i s  of mode l  e x p e r i m e n t s ,  i t  was found tha t  fo r  m e < m 1 <_ 0.5, 

N = 1,6 (ml- -mc)  1'~ 

In [31] i t  was found with the  a id  of  c o m p u t e r  s i m u l a t i o n  tha t  A = 1 fo r  m e <__ m 1 _<_ 0.5. In  [18, 19] a t t e m p t s  
were made to generalize the results of percolation theory to the case in which A 2 <<A t but A 2 ~ 0 and m I varies 

in the range 0 _< m i ~ i. For this purpose, the entire range of concentrations of the components was sub- 

divided into three segments, and a separate function for N was recommended for each segment. Thus, if ; _<_ 

5.10 -4, then N is equal to: 

N v (1 - -  5 m l ) - ' ,  if  m,  ~ me, 

N ~  1,6(ml--m~) ]'6, if m c ~ m l ~ 0 , 5 .  

F o r  m 1 > 0.5,  N was d e t e r m i n e d  by  (11), ob ta ined  on the b a s i s  of the  e f f e c t i v e - m e d i u m  m o d e l .  Th is  f o r m u l a  
is  r e c o m m e n d e d  o v e r  the  e n t i r e  r a n g e  of c o n c e n t r a t i o n s  if v _> 3 .10  -2. F o r  5 .10  -4 -< v _< 10 -2 the  a u tho r s  of  
[18, 19] i n t roduced  into f o r m u l a  (11) an e x p e r i m e n t a l  p a r a m e t e r  which enab led  t h e m  to r e c o n c i l e  the  c a l c u l a t i o n  
with  the  e x p e r i m e n t a l  da t a .  

In ou r  op in ion ,  the  u se  of the  e f f e c t i v e - m e d i u m  m o d e l  as  the  b a s i s  fo r  g e n e r a l i z i n g  the  r e s u l t s  of p e r c o -  
l a t i on  t h e o r y  and the e x p e r i m e n t a l  d a t a  fo r  s t r u c t u r e s  with a d i s o r d e r e d  d i s t r i b u t i o n  of  c o m p o n e n t s  and with  
v < 10 -2 is  f o r m a l  in n a t u r e .  The e f f e c t i v e - m e d i u m  m o d e l  does  not  r e f l e c t  the  topo logy  of the  IC and does  not 
t ake  account  of  i ts  v a r i a t i o n  {branching) a s  the  c o n c e n t r a t i o n  v a r i e s .  A n o t h e r  s h o r t c o m i n g  of the  g e n e r a l i z a -  
t ions  made  in [18, 19] is the  m u l t i p l i c i t y  of  the  f o r m u l a s :  fo r  each  r a n g e  o f  c o n c e n t r a t i o n s  and c onduc t i v i t y  
r a t i o s  u t h e r e  e x i s t s  a s e p a r a t e  f o r m u l a  which  is u n r e l a t e d  to  the s t r u c t u r e  of  the  nonun i fo rm  s y s t e m ,  i . e . ,  
the  p r o p o s e d  f o r m u l a s  a r e  not connec t ed  with the  topo logy  of  the  IC.  

In c o n c l u s i o n ,  it  m a y  be  noted that  the  p r o b l e m  of the c l o s u r e  of the  s y s t e m  of equa t ions  which  was  f o r -  
m u la t ed  in Sec.  1 e x p l a i n s  m a n y  of  the  me thods  and p r o c e d u r e s  fo l lowed in the  i n v e s t i g a t i o n  of the  c o n d u c t i v i t y  
of  h e t e r o g e n e o u s  s y s t e m s .  If  we t ake  accoun t  of  the  d i v e r s i t y  of  s t r u c t u r e s ,  i n c l u s i o n  s h a p e s ,  d i f f e r e n c e s  in 
s t a t e  of  a g g r e g a t i o n ,  p h y s i c a l  p r o p e r t i e s  of  the  m a t e r i a l s ,  e t c . ,  we can  ge t  an i d e a  of the t r e m e n d o u s  n u m b e r  
of c o m b i n a t i o n s  of me thods  fo r  c a l c u l a t i n g  A,  each  of which d i f f e r s  in s o m e  r e s p e c t  f r o m  the  o t h e r s .  O v e r  the  
m a n y  y e a r s  of d e v e l o p m e n t  of t h i s  p r o b l e m ,  t h e r e  have  been  a c c u m u l a t e d  such  a g r e a t  n u m b e r  of me thods  and 
f o r m u l a s  tha t  upon f i r s t  a c q u a i n t a n c e  with  it one migh t  get  the  i m p r e s s i o n  tha t  i t  is  e x t r a o r d i n a r i l y  c o m p l i c a t e d  
and c o m p l e t e l y  h o p e l e s s .  

In s p i t e  of t h i s ,  h o w e v e r ,  i t  is  p o s s i b l e  to  d e d u c e  s o m e  de f in i t e  r e c o m m e n d a t i o n s  even  f r o m  the  p r e s e n t  
s u r v e y .  F i r s t  of a l l ,  the  m o s t  p r o m i s i n g  me thods  a r e  t h o s e  which do not i g n o r e  the  r e a l  t opo logy  of the s y s -  
t e m  u n d e r  s tudy:  the  e l e m e n t a r y - c e l l ,  a v e r a g e d - e l e m e n t ,  and p e r c o l a t i o n  m e t h o d s .  We noted above  the  s p e -  
c i f i c  l i m i t a t i o n s  of  each  of t h e s e  m e t h o d s .  I t  s e e m s  n a t u r a l  to f o r m u l a t e  the  fo l lowing  p r o b l e m :  to  c o n s t r u c t  
a m o d e l  of a h e t e r o g e n e o u s  s y s t e m  which wi l l  have  the  g e o m e t r i c  v i s u a l i z a b i l i t y  found in the  m o d e l s  used  in 
the  e l e m e n t a r y - c e l l  and a v e r a g e d - e l e m e n t  m e t h o d s ;  which  wi l l  t a k e  account  of the  s t a t i c  n a t u r e  of the  d i s t r i b u -  
t i on  of the  componen t s ,  the  t o r tuous  pa ths  of the  hea t  f lux,  and the  p r e s e n c e  of  d e a d - e n d  pa ths ;  which  wi l l  have  
a p r o b a b i l i t y  of  the  f o r m a t i o n  of conduc t ive  b r i d g e s  and the  a p p e a r a n c e  of d i s c on t i nuous  c o n d u c t i v i t y  at  the  
t h r e s h o l d  va lue  of c o n c e n t r a t i o n ,  as  found in the  p e r c o l a t i o n  method ;  and which ,  in l i m i t i n g  c a s e s ,  w i l l  p a s s  to  
w e l l - k n o w n  and h igh ly  d e s i r a b l e  m o d e l s  (the p r i n c i p l e  of c o r r e s p o n d e n c e ) .  

I t  a p p e a r s  tha t  such  a m o d e l  wi l l  be  c o n s t r u c t e d  on the  b a s i s  of  a c o m b i n a t i o n  of the  e l e m e n t a r y - c e l l ,  
a v e r a g e d - e l e m e n t ,  and p e r c o l a t i o n  m e t h o d s ,  s i n c e  each  of  t h e s e  me thods  m e e t s  s o m e  of the  r e q u i r e m e n t s  
f o r m u l a t e d  above .  At  the  s a m e  t i m e ,  i t  should  be  noted tha t  m a n y  h e t e r o g e n e o u s  s y s t e m s  even  t o d a y  can  s a -  
t i s f a c t o r i l y  be  s tud i ed  on the  b a s i s  of  the  me thods  c o n s i d e r e d  h e r e .  What  is  needed  is s i m p l y  to  have  a good 
u n d e r s t a n d i n g  of the  p o s s i b i l i t i e s  of each  me th od ,  and  tha t  is  what  we have  a t t e m p t e d  to  give in th i s  s u r v e y .  
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